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Abstract

The effect of local geometric imperfections on the buckling and postbuckling of composite laminated
cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated.
The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially
compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling,
which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the
postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular per-
turbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples
are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial
local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical
results are presented in dimensionless graphical form for different parameters and loading conditions.
© 1998 Elsevier Science Ltd. All rights reserved.
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Nomenclature

E, Ey elastic moduli for single ply

F F stress function and its dimensionless form

G, shear modulus for single ply

L length of shell

R radius of cylindrical shell

t thickness of shell

W, W deflection of shell and its dimensionless form

W, W* geometrical imperfection of shell and its dimensionless form
Z geometric parameter of shell, = L*/ Rt

o1, 0oy thermal expansion coefficients for single ply

Ay, 0y, 0% average end-shortening and its two alternative dimensionless forms
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€ small perturbation parameter

A* imperfection sensitivity parameter

Aps Ak dimensionless forms of axial compressive load
Apy A% dimensionless forms of thermal load

u imperfection parameter

Vi Vo Poisson’s ratios

1. Introduction

The postbuckling response of multilayered composite cylindrical shells subjected to combined
axial and thermal loads is of current interest to engineers engaged in nuclear, petrochemical and
aerospace engineering practice. These cylindrical shells may have significant and unavoidable
initial geometric imperfections. Although imperfection distributions are likely to be random in
nature, it is often observed that local dimples or modal imperfections are presented in the shell
structure. Therefore, there is a need to understand the postbuckling behavior of imperfect com-
posite laminated cylindrical shells under combined axial compression and thermal loading.

Many initial postbuckling or fully nonlinear postbuckling studies have been made for isotropic
and multilayered composite cylindrical shells with modal imperfections, see, for example, Arbocz
and Babcock (1969), Sheinman et al. (1983) and Shulga et al. (1992), whereas relatively few have
been made for cylindrical shells with local geometric imperfections. The effect of a cosine local
imperfection on the buckling of cylindrical shells under axial compression was studied by Hut-
chinson et al. (1971). Amazigo and Budiansky (1972) gave an imperfection sensitivity analysis of
axially compressed cylindrical shells with localized axisymmetric imperfections using Koiter’s
initial postbuckling theory (see Koiter, 1945). The effect of large diamond shaped dimples on
the buckling of cylindrical shells under axial compression was investigated experimentally by
Krishnakumar and Foster (1991). For pressurized cylindrical shells the effect of dimple imper-
fections was performed by Amazigo and Fraser (1971) and Abdelmoula et al. (1992). All of the
investigations mentioned above are concerned with isotropic cylindrical shells. To the best of the
author’s knowledge, no papers deal with the postbuckling of composite laminated cylindrical shells
with local geometric imperfections subjected to combined axial and thermal loads.

It has been shown by Bushnell and Smith (1971) that in shell thermal buckling as well as in shell
compressive buckling there is a boundary layer phenomenon where prebuckling and buckling
displacements vary rapidly. Based on a boundary layer theory of shell buckling suggested by Shen
and Chen (1988, 1990), which includes the effects of nonlinear prebuckling deformations, large
deflections in the postbuckling range and initial geometric imperfections of the shell, a postbuckling
analysis of perfect and imperfect, stiffened and unstiffened, isotropic and composite laminated
cylindrical shells under various loading cases has been presented by Shen and Chen (1991), Shen
et al. (1993) and Shen (1997a—c). The present study extends the previous work to the case of
composite laminated cylindrical shells with local geometric imperfections subjected to combined
axial compression and uniform temperature loading. The material properties are assumed to be
independent of temperature. The nonlinear prebuckling deformations and the initial local geo-
metric imperfections of the shell are both taken into account. The analysis uses a singular per-
turbation technique to determine the required buckling loads and postbuckling equilibrium paths.
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2. Analytical formulation

Consider a thin cylindrical shell with mean radius R, length L and thickness 7, which consists of
N plies, subjected to two loads combined out of axial compression P, and uniform temperature
rise T,. Let U, V and W be the displacements parallel to a right-hand set of axes (X, Y, Z), where
X, Y and Z are the axial, circumferential and radial (positive inward) coordinates on shell middle
surface. Denoting the initial deflection by W*(X, Y), let W(X, Y) be the additional deflection and
F(X, Y) be the stress function for the stress resultants, and denoting differentiation by a comma,
sothat N, =F ,N,=F N, ,=—F.

Attention is conﬁned to the case of cross-ply laminated cylindrical shells, from which solutions
for isotropic or orthotropic cylindrical shells follow as a limiting case.

From classical laminated shell theory (i.e. transverse shear deformation effects are neglected)
and including thermal effects, leads to the governing differential equations (see Shen, 1997¢). They

are

1 _
Li(W)+L;(F)—Ly(N")— La(MT)— = L(W+ W*, F) (1)
_ 1 _ 1 _ o
Lz(F)_L3(VV)_L5(NT)+EW.v.r: —EL(W—l—ZW*,W) (2)
where
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in these equations [A4}], [B¥] and [D}] (i,j=1,2,6) are reduced stiffness matrices defined as
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A*=A"" B*= —A"'B and D* = D—BA 'B, where A, B and D are membrane, coupling and
flexural rigidities of the shell and details of which can be found in Appendix A.
The thermal forces and moments caused by the temperature rise 7, are defined by

NT, MT , 4,

k
NI, MT|=Y J (1,2)| 4, | T,dZ (4)
Nt M%) e Ak

It is noted that the operator L;() in eqns (1) and (2) includes the coupling between transverse
bending and in-plane stretching and the operator L,() in eqn (1) includes the thermal coupling.
From eqns (3) and (4) it is clear that NI, and M" are all zero, and N and N are both constants,
so that L,(N") = Lsy(N") = Ly(M") = 0.

The average end-shortening is defined as

AY 1 2nR (+LI2 5]
L~ _ZnRLJ J axyd¥raY

0 —L2
B 1 2nR (+L/2 . ﬁ e ﬁ B 02W B 82 T 1 £ 2
=—> 2 ) s Ay + 2oy |7\ P oy + b7 ov2 ) 2\ox
oW oWw*
—aXaX—(A’l“lNXT—i—ATsz)}dXdY %)

and we have the closed (or periodicity) condition

2nR aV
L LAY =0 (6a)

or

2k A* aZF__l_A* 82F_ B* a21/1_/_+_B>i< az 4 +LI7 1 £ ’ aLI_/aW*
0 2ox2 TRy T\ oy T2 52 )T R T 2\0Y ) T oy oy
—(ATsz—FA}kzN}T)}dY:O (6b)

Two loading cases are considered. In the first case, a uniform temperature rise is complemented
by increasing mechanical compressive edge loading. In the second case, mechanical compressive
loading is kept at a constant prebuckling level and the ends of the shell are assumed to be restrained
against expansion longitudinally while the uniform temperature is increased steadily. As a result,
the boundary conditions are

X=+L/)2;

_ i L OF PF  FW P W
W=0, M,=—Bf P — B3 ——; — Dt — D7, Y2

+MI=0
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Fig. 1. A cylindrical shell with a local geometric imperfection.

(simply supported) (7a)
W=W.,=0 (clamped) (7b)
2nR
J N,dY+ P, =0 (for compressive buckling problem) (7c)
0
U =0 (for thermal buckling problem) (7d)

A local asymmetric imperfection is to be assumed as (Fig. 1)
Y
> ®)

G,
where A4,, is a small parameter characterizing the amplitude of the initial imperfection and C, and
C, characterize the half-width of the region of the dimple. Thus local means here that the initial
deflection decay exponentially in both X- and Y-directions.
Equations (1)—(8) are the governing equations describing the required large deflection post-
buckling response of the shell.

- X
W*(XaY) :Amexp<_ Cf
1

3. Analytical method and asymptotic solutions
Let the thermal expansion coefficients for each ply be
Ay = A%y, Orp = darlly ©)

where o, is an arbitrary reference value, and let

4 Az 10
|:A}Tj| B _kzl J;/<1 |:Ay:|k (10
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Introducing the dimensionless quantities (in which the alternative forms A}, 63 and A% are not
needed until the numerical examples are considered)

x=nX/L, y=Y/R, B=L/nR, Z=L*/Rt, ¢=(n*R/L*)[D¥ D% A% A%]"",
(W, W*) = (W, W*)|[D¥, D%, A}, 45,1, F = ¢ F/[D}, D%,]'7,

712 = (DR +2D%) /DY, 714 = [D5,/DF]'2,

722 =(ATy +AE6/2)/ A%, Y20 = [A?kl/Aikz]l/za Vs = — AT /A%,

(V30> 7325 V345 V3115 V322) = (B1, Bfy + B, —2Bis, Bf,, B, B%,)/[Df D5, AT A%]'*,
(V71> Y72) :(A.Z, AZ)R/O(O[DTID%/ATIAEEZ]1/4a (y1,72) =(L/mC,, R/C,),

M, = &M .L*|n* DY, [Df, D%, A% A%,]"",

Ap = P.JAn[D} D%, /A% A%]"0, A% = P.[3(1 —vi,v2))]' 22007 [Ey E]'2,

o, =(A/L)/Q2/R[DF D5 AT A%], 0% =(A/L)B3(1—vi,v2)]"?/(t/R),

(A, 23) =(1,10%) 0, T (11)
enables the nonlinear eqns (1) and (2) to be written in dimensionless form as

&Ly (W) +ep1sLy(F) =7 14F o = y P LW+ W*, F) (12)

Ly(F) =&y Ly(W) +724 W, = —%y24ﬁ2L(W—}—2W*, W) (13)
where

64 4 4
Li() = +2yp° ox 25}}2 +V%4ﬂ4aﬁ
L,() = 64 +2“/22/3 axfz;z +V2454 84

4 4 4

0
Li() = /30a +'V32ﬁ2 X2 0y +V34ﬂ4§

0* 0? o* 0* 0°

ooy Caxdyaxdy T oy ax (9

L) =

The unit end-shortening relationship becomes

1 2n (*+mn/2 62 82 82 82
5X = — 371 2 il B n
4n?y,, Jo Jn/z |:<V24ﬁ 0y —7s ax‘;) V24 (%11 P V3482 oy ’

1 OW\? oW oWw*
_53’24 <6[;CV> — Y24 A ox 8 +(V24VT| VSyT2)}“T8:|dXdy (15)

and the closed condition becomes
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m [ (O*F ,0° ‘ oW ,0°
. ﬁ_%ﬁ ﬁ —&Y24 V.wE‘H’azzﬁ oy +y24 W

1 OW\? oW oW
—5?24/32 <(;;V> —V24/325 oy +(VT2_V5VT1)/1T8:|dy =0 (l6)

Note that eqns (12) and (13) are identical to those of composite laminated cylindrical shells
under pure axial compression, but that eqn (11) is augmented by the definition of A,, which is used
in eqns (15) and (16).

The boundary conditions become x = +m/2;

W=M,=0 (simplysupported) (17a)
W=W,=0 (clamped) (17b)
1 (> O°F ) )
o p ﬁdy—i-ﬂps =0 (for compressive buckling problem) (17¢)
0
0, = 0 (for thermal buckling problem) (17d)

For isotropic cylindrical shells, because of eqn (11) we have &= n?/Z B\m, where
Zy = (L?/RH[1 —v*]"* is Batdorf shell parameter which should be greater than 2.85 in the case of
classical buckling analysis (see Batdorf, 1947). Z, > 2.85 results ¢ < 1,then eqns (12) and (13) are
the equations of the boundary layer type, from which nonlinear prebuckling deformations, large
deflections in the postbuckling range and initial geometric imperfections of the shell can be
considered simultaneously.

Applying eqns (12)—(17), the thermomechanical postbuckling behavior of such shells is now
determined by a singular perturbation technique suggested in Shen and Chen (1988, 1990).

To construct an asymptotic solution for the composite laminated cylindrical shell, the additional
deflection and stress functions in eqns (12) and (13) are assumed as

W =w(x,y,e)+W(x, & v,e)+W(x,(,p,e)
F=f(x,y, )+ F(x,&,p,6)+ F(x,{, p,¢) (18)

where ¢ is a small perturbation parameter defined in eqn (11) and w(x, y, €), f(x, y, &) are called outer
solutions or regular solutions of the shell, W(x, &, y, ), F(x, &, v, ¢) and W(x, , v, ¢), F(x,(,y,¢) are
boundary layer solutions near the x = + /2 edges, respectively, and ¢ and { are the boundary
layer variables, defined as

_m2+x _m2—x
5—7\/5 : C—i\/g (19)

(This means for isotropic cylindrical shells the width of the boundary layers is of the order ./ Rt.)
In eqn (18) the regular and boundary layer solutions are taken in the form of perturbation
expansions as

w(x,y,e) = ; dwi(x,y), flx,p,6) = _;O &f;(x,y) (20a)
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W(X, éay7 8) = Z S/Jrl Wj+l(x7 5,)/), F(X, é’y7 8) = Z 8/+2E+2(x5 é’y) (2’0b)
W(X, Caya 8) = Z 81+ /+l(x C y) F(X, éay: 8) = Z 8/JFZF‘nLZ(x él y) (200)

The initial buckling mode is assumed to have the form

wy(x,y) = A cos mx cosny (21)

The initial local geometric imperfection is represented as a Fourier cosine series, i.e.

W*(xaya 8) = 82a111 eXp(_yl |X| _y2|y|)
b
=&’ ud? <2 + Z a; coszx) <20 + ) b; cosjy) (22a)
j=1

where

4 (n2 2 (7
a; = ﬂj exp(—yix)cosixdx, b, = NJ exp(—7,y) cosjydy (22b)
0

0

and u = a,,/A? is the imperfection parameter.

Substituting eqns (18)—(20) into eqns (12) and (13) gives a set of perturbation equations that
can be solved step by step.

Then using eqns (21) and (22) to solve these perturbation equations of each order, and matching
the regular solutions with the boundary layer solutions at each end of the shell, so that the
asymptotic solutions satisfying clamped boundary conditions are constructed as

W(x,y,e) =¢ [A(” A < d)n/f/tx + ;sin¢n/f;x>exp <—acn/\2/JEX>
& & &

— ALY (cos ¢ n/f/—gx 5 sin ¢ n/f/ )exp (— o n/\2/g x)]

& |:A(2) cos mx cosny+ AS) cos 2mx+ AGH cos 2ny

—(— A + A cos 2ny) <COS ¢ /\2/—’:)( + %sinqﬁ ﬂ/f/‘f:x> CXp <_an/\2}_x>
e é ¥

B (_A(z) A cos ny) <COS ¢ /\/_ %sin ¢ n/f/t X) exp <_O( 73/\2/—)6)}
g & ¢

+&’[AYY cos mx cosny+ AGY cos 2ny] +e*[AGY + ASY cos 2mx + ASY cos 2ny

+ A cos mx cos 3ny + AfY) cos 4ny] + O(&’) (23)
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F(x,y,¢) = Bgoo)yz +&|: B(olo)yz}i-s2 [—B %+Bﬁ’cosmxcosny

+ AN </24 <1 +V30>cos¢ /f/_gx —V24 <Zl) —y30>zsin¢n/f};x>exp <_an'/f/gx>
+ A4 < <1 +V30>C05¢ /f/_gx V24 <]i —y30>2§sin¢n/\2/_;x>exp <_a7t/f/—EX>:|

24X

2 1
+¢° [—BB’? % + B cos 2ny 4 (— A5) + A cos 2ny) <V24 <b +V3()>COS ¢

_ 1_ o inq5n/2+x ol 2+ Xx
V24<b V30>¢5 \/ )e p< & \/; >

1 2—
+ (— A5+ AF) cos 2ny) { 124 | +730 Cos¢n/ :
b Je

(1 ind n/2—x exo [ — n/2—x}
/24<b V30>¢S \/) p< o \/é)

+é& [—BE{Q y? + B cos mx cos ny+ BSY) cos 2mx+ BSY cos 2ny

+ B®) cos mx cos 3ny}|— 0(e) (24)

Note that, all of the coefficients in eqns (23) and (24) are related and can be written as the
functions of 4% but, for the sake of brevity, the detailed expressions are not shown, whereas a, ¢
and b are given in detail in Appendix B.

Next, substituting eqns (23) and (24) into boundary condition (17c) and into closed condition
(16) and into eqn (15), the postbuckling equilibrium paths for the initially heated shells can be
written as

T,
Jp = (1— T0>i§9)—A"}”(A(lzl)s)—/lﬁf)(A(z)s)z+A(3)(A( £)> + 2 (ARe)* + - - (25)

and
9, =09 +05(AVe)* + 05 (AT e)* +- - (26)

in eqns (25) and (26), (A4{7¢) is taken as the second perturbation parameter relating to the
dimensionless maximum deflection. If the maximum deflection is assumed to be at the point
(x,») =(0, 0), then
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ARe =W, =0, W, +- - (27a)

where W, is the dimensionless form of the maximum deflection of the shell that can be written as

1 w
- + @2)\,5}0)

{
I/I/m = |: :|
& \4/ D, D%, AT, A%, 4

All symbols used in eqns (25)—(27) and eqns (28)—(29) below are described in detail in Appendix
B.

Similarly, substituting eqns (23) and (24) into boundary condition (17d) and into closed con-
dition (16), the thermal postbuckling equilibrium path for the initially compressed shells can be
written as

(27b)

Px ) 1 1
hr = Ci, [(1— » )w—M(A&%)s)—A¥>(Aﬁ>s>2+»£><Aﬁ>s>3+z<;‘><Aﬁ>s)4+~~} (28)

in eqn (28) (A4{?¢) is also taken as the second perturbation parameter in this case, and we have
ARe =W, —0O; W5+ (292)

and the dimensionless maximum deflection is written as

1 t /4
& \4/ DY, D%, AT, A%, 4

Note that eqns (25) and (28) contain terms A%, 1%, A% and 1% which are not included in the
modal imperfection case of Shen (1997c¢).

Equations (25)—(29) can be used to obtain numerical results for the postbuckling load-deflection
(or load-shortening) curves of composite laminated cylindrical shells with local geometric imper-
fections subjected to combined axial compression and uniform thermal loading, specially for the
two cases of compressive postbuckling of initially heated laminated shells; and thermal post-
buckling of initially compressed laminated shells. Buckling under pure axial compression and
buckling under pure uniform thermal loading follow as two limiting cases. From eqn (11) and
Appendix B, equations for the critical value of compressive load P, or temperature rise 7., can
easily be found. Due to the perturbation procedure only the same terms of buckling mode in
W*(x, y,e) will make contribution to the postbuckling loads, so that 4, (or A;) only depends on
d\y, dy, dy, d,5 and d,,. Because the transverse shear deformation effects are neglected in the present
analysis, the shell radius to thickness ratio should be greater than 50 and whose in-plane elastic
modulus to shear modulus ratio should be less than 50,i.e. R/t > 50 and E,,/G,, < 50. The buckling
load of a perfect shell can also be readily obtained numerically, by setting u = 0 (or W*/t = 0),
while taking W,, =0 (or W/t =0). In all cases, the minimum buckling load is determined by
applying eqn (25) or (28) for various values of the buckling mode (m, n), which determine the
number of half-waves in the X-direction and full waves in the Y-direction. Note that because of
eqn (23), the prebuckling deformation of the shell is nonlinear, thus the result presented is different
from the classical one.
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4. Numerical results and discussion

Numerical results were obtained to determine the effect of local geometric imperfections on the
buckling and postbuckling of composite laminated cylindrical shells under combined axial and
thermal loads. A number of examples were solved to illustrate the performance of cross-ply
laminated cylindrical shells with or without local or initial buckling modal imperfections, i.e.
W*(x, y, &) = &a,,cos mxcosny, for which the results were obtained numerically in the manner
described previously and detailed further in Shen (1997c). Typical results are presented in dimen-
sionless graphical form in which A} and % are used for initially heated shells and A% is used for
initially compressed shells. For all of the examples the shells buckled in the asymmetric mode and
all plies of equal thickness (note that ¢ remains constant, so that ply thickness #/N decreases as N
increases). The shell geometric parameters were L = 300 cm, R = 4L/n = 381.97 cm and total
thickness t = 1 cm; and the local imperfection parameter were C,/L = C,/R = 0.05; and the
material properties were E;, = 130.3 GPa, E,, =9.377 GPa, G,, =4.502 GPa, v, =0.33,
oy = 0.139 x 107¢/°C and oy, = 9.0 x 107%/°C. On all figures W*/t and W/t mean the dimensionless
forms of the maximum values of, respectively, the initial and additional deflection of the shell.

Figures 2—4 show, respectively, the compressive postbuckling load-deflection and load-short-
ening curves of perfect and imperfect, isotropic and 4-ply (0/90)s symmetrically and (0/90),
antisymmetrically cross-ply laminated cylindrical shells for the different values of the initial thermal
loading T, shown. In Figs 2—4, the well-known ‘“‘snap-through” behavior of shells can be found
and the imperfection sensitivity can be predicted. Clearly increasing the initial thermal stress
reduces the compressive buckling load substantially and the postbuckling equilibrium path becomes
significantly lower. Also the maximum value of A} for the shells with local imperfections is slightly

« | isotropic plate
Ap | Rit=38197

Z =235.62
(m, n)y=(2, 15) /)

0.5

1: T,/ T,,= 0.0
2: T/ T.r=0.25

W/t Sp
(@) (b)

Fig. 2. Postbuckling equilibrium paths of initially heated isotropic cylindrical shells: (a) load-deflection; (b) load-
shortening.
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(a)

Fig. 3. Postbuckling equilibrium paths of initially heated (0/90)s laminated cylindrical shells: (a) load-deflection ; (b)

load-shortening.

W/t

(@

Fig. 4. Postbuckling equilibrium paths of initially heated (0/90), laminated cylindrical shells: (a) load-deflection; (b)

load-shortening.

W/t

1

A

0.5¢

(0/90)s

R/t=38197, 7z =235.62
(m, n)=(2, 14) 1,

1: 7,/ T,;= 0.0
2: T,/ T,,=0.25

L

0.5 .

5
(b)

(0/90)z1
Rit=38197, 7 =235.62
(m, ny=(4, 15) n
/: SITET
1: 7,/ T,.=0.0

2: T/ Ter=10.25

(b)
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1 1
2\ isotropic plate AN (0/90)g
R/t=38197, z =235.62 A “l\\\\ Rt=38197, z =235.62
Local
Local
051 N 0.5f
Modal
Modal
T,/ Toi=00 To/ T.r=0.0
""""""" 17,/ T.,= 0.25 o Tl Tee=10.25
0 L 0 L .
0 0.5 1 0 0.2 0.4
W/t W/t
(@) (b)
1
}\* Local
Modal
0.5
(0/90),r
R/t=38197, z =235.62
T,/ T..=0.0
------------- T,/ T,,=0.25
0 1
0 0.1 0.2
Wt

(©)

609

Fig. 5. Comparisons of imperfection sensitivities of initially heated cylindrical shells under axial compression: (a)
isotropic; (b) (0/90)s; (c) (0/90),r.

greater than that of the shells with modal imperfections and the discrepancy between these two

shape imperfections will become very small when the deflection is sufficiently large.

Figure 5 shows curves of imperfection sensitivity for initially heated, isotropic and cross-ply
laminated cylindrical shells. A* is the maximum value of A} as W/t varies on curves such as those
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of Figs 24, made dimensionless by dividing by the critical value of 4% for the perfect shell, i.e. by
dividing the 1} given by W/t = W*/t = 0.0. These results show that the imperfection sensitivity of
the isotropic shell is the largest one, and the imperfection sensitivity of the (0/90)g shell is greater
than that of (0/90),r. The imperfection sensitivity of shells with local imperfections is weaker than
that of shells with modal imperfections. Also the imperfection sensitivity of an initial heated shell
is slightly greater than that of the shell without any initial thermal stress.

Figures 6-8 are the thermal postbuckling results for initially compressed shells analogous to the
compressive postbuckling results of Figs 2—4, but without load-shortening curves.

Figure 6 shows the thermal postbuckling load-deflection curves of isotropic cylindrical shells
with or without local or modal imperfections. Then Fig. 7 shows that the perfect (0/90)s laminated
cylindrical shells has a weak “‘snap-through’ thermal postbuckling response. In contrast, for an
imperfect shell with local or modal imperfections there is no maximum value of A% when
W*/t > 0.08 (or 0.06), as a result the shell structure becomes imperfection-insensitive.

Figure 8 shows that if the temperature exceeds a critical buckling level, the thermal postbuckling
load-deflection curves of the initially compressed (0/90),; laminated shell go upward dramatically,
and the shell structure also becomes imperfection-insensitive.

Figure 9 shows curves of imperfection sensitivity for initially compressed (0/90)g laminated
cylindrical shells. Now A* is the maximum value of A% made dimensionless by dividing by the
critical value of A% for the perfect shell. Note that in all of these examples the imperfection
sensitivity of shells under thermal load is weaker than that of shells under compressive load
(compare Figs 5(b) and 9), and the results shown in Fig. 9 were only for the (0/90)g laminated
cylindrical shell with very small initial geometric imperfections.

isotropic plate
A Rt=38197, z =235.62
(m, n)=(2, 15)

Modal W./t = 0.0
"""""""""" W/t=041
o Il
0 1 _ 2
W/t

1: P,/ P..=0.0
2: P,/ P,,=0.25

Fig. 6. Thermal postbuckling load-deflection curves of initially compressed isotropic cylindrical shells.
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1
A 00

Rt=38197, z =235.62
(m, n)=(2, 14)

Local

W/t
1: Py/ Pyy=0.0
2: Py/ P,;=0.25
Fig. 7. Thermal postbuckling load-deflection curves of initially compressed (0/90)s laminated cylindrical shells.

5. Conclusions

In order to assess the effect of local geometric imperfections on the buckling and postbuckling
of composite laminated cylindrical shells subjected to combined axial compression and a uniform
temperature rise, a postbuckling analysis is developed according to a boundary layer theory and a
fully nonlinear postbuckling load-deflection or load-shortening curve is presented. The two cases
of compressive postbuckling of initially heated shells and of thermal postbuckling of initially
compressed shells have been considered. The numerical examples relate to the performances of
cross-ply laminated cylindrical shells with or without local geometric imperfections, from which
results for isotropic cylindrical shells follow as a limiting case. Like the shell with initial buckling
modal imperfections, the numerical results show that the postbuckling behavior of initially com-
pressed, laminated cylindrical shells under thermal load is different from that of mechanically
loaded shells with and without initial thermal stress. In many cases the cylindrical shell has a stable
thermal postbuckling equilibrium path, and the shell structure becomes imperfection-insensitive.
In addition, for a given value of W*/t, local imperfections have an effect which is somewhat less
severe than a modal imperfection, and the imperfection sensitivity of shells with local imperfections
is weaker than that of shells with modal imperfections.
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3

AL | (090)r W f
Rt=38197, z=235.62 4
(m, n)=(4, 15)

1: P,/ P,,=0.0
2: P,/ P;;=0.25

Fig. 8. Thermal postbuckling load-deflection curves of initially compressed (0/90),; laminated cylindrical shells.

;
Local
A
Modal
(0/90)s
0.5 R/it=381.97, 7 =235.62
—— P,/ P,,=0.0
............. P,/ P,.=025
0 1
0 0.05 041
Wt

Fig. 9. Comparisons of imperfection sensitivities of initially compressed (0/90)g laminated cylindrical shells under
uniform temperature loading.
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Appendix A

The membrane, coupling and flexural rigidities beneath eqn (3) are defined as

All A12 0 Bll BlZ O Dll D12 O
A= A12 Azz 0 D B = BIZ Bzz 0 5 D= D12 Dzz 0 (Al)
O 0 A66 0 0 B66 O 0 D66
and A4,, B, and D;; are defined by
1 _
(Ay, Bys Dy) = ). J ©Q(1,2,2%)dZ  (i,j=1,2,6) (A2)
k=1 e
where Q,; are the transformed elastic constants, defined by
0, ] [ 2¢%s? st 4c%s? |
O, s st AP —4c%s? (o
) st 2c%s? c? 4c%5?
Q-22 = 3 33 3 2 2 O (A3)
O c’s e —c’s —esw —2es(c”—s7) 0,,
06 e’ Ps—es® —cPs 2es(cP—s?) Oss
O 252 —2cks? o262 (c2 —5?)?
where
Ey, E,, Va1 By
Qll (1_v12v21)9 Q22 (1_v12v21)7 Q12 (1_‘)12‘)21)’ Q66 12 ( )
and
c=cosf), s=sin0 (A9)
where 0 = lamination angle with respect to the shell X-axis.
A, Q_11 Q_IZ Q_16 ¢ s o
Ay = = le sz Q_26 s? ¢ [ocll:| (A6)
22

Ax,v Q_lé Q_zo Q_se 2cs  —2cs

where o, and a,, are thermal expansion coeflicients for a single ply.

Appendix B

In eqns (25)—(27)

1 %4 m4ﬂ11 1 1 V%4 m’ V34 2,495 2ys )
®1=F 2 g2 +§ P 22\ Hi2— +
3 L\D14y24+734/ 1607 g, V14724 TV34) V2alt” 7 \V24 9> V24
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T 2, —3 T
®2=2;5<1_T0>+V24; Vs ZT; F0
24 “ 24 (V§4”/T1 —7s772) + ;gys(yrz _Vsyrl)gl/z “
2
Cy = 1= P e (udag)+ 2 45D
m V24
1 m? 1 2
Jo - V24 - +V2493 Mo+ £+V24g3 toor e
2| gt 9> m= gy \V14 9>
2
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- 32 |— | 222
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128 | 3270\ 4724 +734) n*Btg3 gty —4m*

and in eqns (28) and (29)

o
2 2,172
Y24 — — 7 V5"
)
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1/2
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in the preceding equations
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_ 4 V2
Yy 3+ 16n2)

dy [1—exp(—717/2)][1 —exp(—7,7)] (B4)
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