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Abstract

The e}ect of local geometric imperfections on the buckling and postbuckling of composite laminated
cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated[
The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially
compressed shells are considered[ The formulations are based on a boundary layer theory of shell buckling\
which includes the e}ects of the nonlinear prebuckling deformation\ the nonlinear large de~ection in the
postbuckling range and the initial geometric imperfection of the shell[ The analysis uses a singular per!
turbation technique to determine buckling loads and postbuckling equilibrium paths[ Numerical examples
are presented that relate to the performances of cross!ply laminated cylindrical shells with or without initial
local imperfections\ from which results for isotropic cylindrical shells follow as a limiting case[ Typical
results are presented in dimensionless graphical form for di}erent parameters and loading conditions[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

Key words] Structural stability^ Thermomechanical postbuckling^ Composite laminated cylindrical shell^ A boundary layer theory of
shell buckling^ Singular perturbation technique

Nomenclature

E00\ E11 elastic moduli for single ply
FÞ\ F stress function and its dimensionless form
G01 shear modulus for single ply
L length of shell
R radius of cylindrical shell
t thickness of shell
WÞ \ W de~ection of shell and its dimensionless form
WÞ �\ W� geometrical imperfection of shell and its dimensionless form
ZÞ geometric parameter of shell\ �L1:Rt
a00\ a11 thermal expansion coe.cients for single ply
Dx\ dx\ d�P average end!shortening and its two alternative dimensionless forms
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o small perturbation parameter
l� imperfection sensitivity parameter
lp\ l�p dimensionless forms of axial compressive load
lT\ l�T dimensionless forms of thermal load
m imperfection parameter
n01\ n10 Poisson|s ratios

0[ Introduction

The postbuckling response of multilayered composite cylindrical shells subjected to combined
axial and thermal loads is of current interest to engineers engaged in nuclear\ petrochemical and
aerospace engineering practice[ These cylindrical shells may have signi_cant and unavoidable
initial geometric imperfections[ Although imperfection distributions are likely to be random in
nature\ it is often observed that local dimples or modal imperfections are presented in the shell
structure[ Therefore\ there is a need to understand the postbuckling behavior of imperfect com!
posite laminated cylindrical shells under combined axial compression and thermal loading[

Many initial postbuckling or fully nonlinear postbuckling studies have been made for isotropic
and multilayered composite cylindrical shells with modal imperfections\ see\ for example\ Arbocz
and Babcock "0858#\ Sheinman et al[ "0872# and Shulga et al[ "0881#\ whereas relatively few have
been made for cylindrical shells with local geometric imperfections[ The e}ect of a cosine local
imperfection on the buckling of cylindrical shells under axial compression was studied by Hut!
chinson et al[ "0860#[ Amazigo and Budiansky "0861# gave an imperfection sensitivity analysis of
axially compressed cylindrical shells with localized axisymmetric imperfections using Koiter|s
initial postbuckling theory "see Koiter\ 0834#[ The e}ect of large diamond shaped dimples on
the buckling of cylindrical shells under axial compression was investigated experimentally by
Krishnakumar and Foster "0880#[ For pressurized cylindrical shells the e}ect of dimple imper!
fections was performed by Amazigo and Fraser "0860# and Abdelmoula et al[ "0881#[ All of the
investigations mentioned above are concerned with isotropic cylindrical shells[ To the best of the
author|s knowledge\ no papers deal with the postbuckling of composite laminated cylindrical shells
with local geometric imperfections subjected to combined axial and thermal loads[

It has been shown by Bushnell and Smith "0860# that in shell thermal buckling as well as in shell
compressive buckling there is a boundary layer phenomenon where prebuckling and buckling
displacements vary rapidly[ Based on a boundary layer theory of shell buckling suggested by Shen
and Chen "0877\ 0889#\ which includes the e}ects of nonlinear prebuckling deformations\ large
de~ections in the postbuckling range and initial geometric imperfections of the shell\ a postbuckling
analysis of perfect and imperfect\ sti}ened and unsti}ened\ isotropic and composite laminated
cylindrical shells under various loading cases has been presented by Shen and Chen "0880#\ Shen
et al[ "0882# and Shen "0886aÐc#[ The present study extends the previous work to the case of
composite laminated cylindrical shells with local geometric imperfections subjected to combined
axial compression and uniform temperature loading[ The material properties are assumed to be
independent of temperature[ The nonlinear prebuckling deformations and the initial local geo!
metric imperfections of the shell are both taken into account[ The analysis uses a singular per!
turbation technique to determine the required buckling loads and postbuckling equilibrium paths[
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1[ Analytical formulation

Consider a thin cylindrical shell with mean radius R\ length L and thickness t\ which consists of
N plies\ subjected to two loads combined out of axial compression Px and uniform temperature
rise T9[ Let UÞ\ VÞ and WÞ be the displacements parallel to a right!hand set of axes "X\ Y\ Z#\ where
X\ Y and Z are the axial\ circumferential and radial "positive inward# coordinates on shell middle
surface[ Denoting the initial de~ection by WÞ �"X\ Y#\ let WÞ "X\ Y# be the additional de~ection and
FÞ"X\ Y# be the stress function for the stress resultants\ and denoting di}erentiation by a comma\
so that Nx � FÞ\yy\ Ny � FÞ\xx\ Nxy � −FÞ\xy[

Attention is con_ned to the case of cross!ply laminated cylindrical shells\ from which solutions
for isotropic or orthotropic cylindrical shells follow as a limiting case[

From classical laminated shell theory "i[e[ transverse shear deformation e}ects are neglected#
and including thermal e}ects\ leads to the governing di}erential equations "see Shen\ 0886c#[ They
are

L0"WÞ #¦L2"FÞ#−L3"NT#−L5"MT#−
0
R

FÞ\xx � L"WÞ¦WÞ�\ FÞ# "0#

L1"FÞ#−L2"WÞ #−L4"NT#¦
0
R

WÞ \xx � −
0
1

L"WÞ¦1WÞ�\ WÞ # "1#

where
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y

L4"NT# � 0A�01

11
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11
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in these equations ðA�ijŁ\ ðB�ijŁ and ðD�ijŁ "i\ j � 0\ 1\ 5# are reduced sti}ness matrices de_ned as
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A� � A−0\ B� � −A−0B and D� � D−BA−0B\ where A\ B and D are membrane\ coupling and
~exural rigidities of the shell and details of which can be found in Appendix A[

The thermal forces and moments caused by the temperature rise T9 are de_ned by

&
NT

x \ MT
x

NT
y \ MT

y

NT
xy\ MT

xy
'� s

k�0 g
tk

tk−0

"0\ Z# &
Ax

Ay

Axy
'
k

T9 dZ "3#

It is noted that the operator L2" # in eqns "0# and "1# includes the coupling between transverse
bending and in!plane stretching and the operator L3" # in eqn "0# includes the thermal coupling[
From eqns "2# and "3# it is clear that NT

xy and MT are all zero\ and NT
x and NT

y are both constants\
so that L3"NT# � L4"NT# � L5"MT# � 9[

The average end!shortening is de_ned as

Dx

L
� −

0
1pRL g
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9 g
¦L:1

−L:1

1UÞ
1X

dX dY
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−
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T
x¦A�01N

T
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and we have the closed "or periodicity# condition

g
1pR

9

1VÞ
1Y

dY � 9 "5a#

or

g
1pR

9 $0A�11

11FÞ

1X1
¦A�01

11FÞ
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11WÞ
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Two loading cases are considered[ In the _rst case\ a uniform temperature rise is complemented
by increasing mechanical compressive edge loading[ In the second case\ mechanical compressive
loading is kept at a constant prebuckling level and the ends of the shell are assumed to be restrained
against expansion longitudinally while the uniform temperature is increased steadily[ As a result\
the boundary conditions are

X � 2L:1 ^

WÞ � 9\ MÞ x � −B�00

11FÞ

1Y1
−B�10

11FÞ

1X1
−D�00

11WÞ

1X1
−D�01

11WÞ

1Y1
¦MT

x � 9
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Fig[ 0[ A cylindrical shell with a local geometric imperfection[

"simply supported# "6a#

WÞ � WÞ \x � 9 "clamped# "6b#

g
1pR

9

Nx dY¦Px � 9 "for compressive buckling problem# "6c#

UÞ � 9 "for thermal buckling problem# "6d#

A local asymmetric imperfection is to be assumed as "Fig[ 0#

WÞ�"X\ Y# � Am exp 0−b
X
C0 b−b

Y
C1 b1 "7#

where Am is a small parameter characterizing the amplitude of the initial imperfection and C0 and
C1 characterize the half!width of the region of the dimple[ Thus local means here that the initial
de~ection decay exponentially in both X! and Y!directions[

Equations "0#Ð"7# are the governing equations describing the required large de~ection post!
buckling response of the shell[

2[ Analytical method and asymptotic solutions

Let the thermal expansion coe.cients for each ply be

a00 � a00a9\ a11 � a11a9 "8#

where a9 is an arbitrary reference value\ and let

$
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k�0 g
tk

tk−0
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Ay%k

dZ "09#
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Introducing the dimensionless quantities "in which the alternative forms l�P\ d�P and l�T are not
needed until the numerical examples are considered#

x � pX:L\ y � Y:R\ b � L:pR\ ZÞ � L1:Rt\ o �"p1R:L1#ðD�00D�11A�00A�11Ł0:3\

"W\ W�# � o"WÞ \ WÞ�#:ðD�00D�11A�00A�11Ł0:3\ F � o1FÞ:ðD�00D�11Ł0:1\

g01 �"D�01¦1D�55#:D�00\ g03 � ðD�11:D�00Ł0:1\

g11 �"A�01¦A�55:1#:A�11\ g13 � ðA�00:A�11Ł0:1\ g4 � −A�01:A�11\

"g29\ g21\ g23\ g200\ g211# �"B�10\ B�00¦B�11−1B�55\ B�01\ B�00\ B�11#:ðD�00D�11A�00A�11Ł0:3\

"gT0\ gT1# �"AT
x \ AT

y #R:a9 ðD�00D�11:A�00A�11Ł0:3\ "g0\ g1# �"L:pC0\ R:C1#\

Mx � o1MÞ xL
1:p1D�00 ðD�00D�11A�00A�11Ł0:3\

lP � Px:3pðD�00D�11:A�00A�11Ł0:3\ l�P � Px ð2"0−n01n10#Ł0:1:1pt1 ðE00E11Ł0:1\

dx �"Dx:L#:"1:R#ðD�00D�11A�00A�11Ł0:3\ d�P �"Dx:L#ð2"0−n01n10#Ł0:1:"t:R#\

"lT\ l�T# �"0\ 092#a9T9 "00#

enables the nonlinear eqns "0# and "1# to be written in dimensionless form as

o1L0"W#¦og03L2"F#−g03F\xx � g03b
1L"W¦W�\ F# "01#

L1"F#−og13L2"W#¦g13W\xx � −0
1
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1L"W¦1W�\ W# "02#

where
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1y3

L2" # � g29
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1x3
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1x1
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1y1
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11

1x 1y
11

1x 1y
¦

11

1y1

11

1x1
"03#

The unit end!shortening relationship becomes

dx � −
0

3p1g13

o−0g
1p

9 g
¦p:1

−p:1 $0g
1
13b

1 11F

1y1
−g4

11F

1x11−og13 0g200

11W

1x1
¦g23b

1 11W

1y1 1
−

0
1

g13 0
1W
1x 1

1

−g13

1W
1x

1W�
1x

¦"g1
13gT0−g4gT1#lTo% dx dy "04#

and the closed condition becomes



Hui!Shen Shen : International Journal of Solids and Structures 25 "0888# 486Ð506 592

g
1p

9 $0
11F

1x1
−g4b

1 11F

1y11−og13 0g29

11W

1x1
¦g211b

1 11W

1y1 1¦g13W

−
0
1

g13b
1 0

1W
1y 1

1

−g13b
1 1W

1y
1W�
1y

¦"gT1−g4gT0#lTo% dy � 9 "05#

Note that eqns "01# and "02# are identical to those of composite laminated cylindrical shells
under pure axial compression\ but that eqn "00# is augmented by the de_nition of lT\ which is used
in eqns "04# and "05#[

The boundary conditions become x � 2p:1 ^

W � Mx � 9 "simply supported# "06a#

W � W\x � 9 "clamped# "06b#

0
1p g

1p

9

b1 11F

1y1
dy¦1lPo � 9 "for compressive buckling problem# "06c#

dx � 9 "for thermal buckling problem# "06d#

For isotropic cylindrical shells\ because of eqn "00# we have o � p1:ZÞBz01\ where
ZÞB �"L1:Rt#ð0−n1Ł0:1 is Batdorf shell parameter which should be greater than 1[74 in the case of
classical buckling analysis "see Batdorf\ 0836#[ ZÞB × 1[74 results o ³ 0\then eqns "01# and "02# are
the equations of the boundary layer type\ from which nonlinear prebuckling deformations\ large
de~ections in the postbuckling range and initial geometric imperfections of the shell can be
considered simultaneously[

Applying eqns "01#Ð"06#\ the thermomechanical postbuckling behavior of such shells is now
determined by a singular perturbation technique suggested in Shen and Chen "0877\ 0889#[

To construct an asymptotic solution for the composite laminated cylindrical shell\ the additional
de~ection and stress functions in eqns "01# and "02# are assumed as

W � w"x\ y\ o#¦W	 "x\ j\ y\ o#¦W
 "x\ z\ y\ o#

F � f"x\ y\ o#¦F	"x\ j\ y\ o#¦F
"x\ z\ y\ o# "07#

where o is a small perturbation parameter de_ned in eqn "00# and w"x\ y\ o#\ f"x\ y\ o# are called outer
solutions or regular solutions of the shell\ W	 "x\ j\ y\ o#\ F	"x\ j\ y\ o# and W
 "x\ z\ y\ o#\ F
"x\ z\ y\ o# are
boundary layer solutions near the x � 2p:1 edges\ respectively\ and j and z are the boundary
layer variables\ de_ned as

j �
p:1¦x

zo
\ z �

p:1−x

zo
"08#

"This means for isotropic cylindrical shells the width of the boundary layers is of the order zRt[#
In eqn "07# the regular and boundary layer solutions are taken in the form of perturbation
expansions as

w"x\ y\ o# � s
j�0

ojwj"x\ y#\ f"x\ y\ o# � s
j�9

ojfj"x\ y# "19a#
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W	 "x\ j\ y\ o# � s
j�9

oj¦0W	 j¦0"x\ j\ y#\ F	"x\ j\ y\ o# � s
j�9

oj¦1F	j¦1"x\ j\ y# "19b#

W
 "x\ z\ y\ o# � s
j�9

oj¦0W
 j¦0"x\ z\ y#\ F
"x\ z\ y\ o# � s
j�9

oj¦1F
j¦1"x\ z\ y# "19c#

The initial buckling mode is assumed to have the form

w1"x\ y# � A"1#
00 cos mx cos ny "10#

The initial local geometric imperfection is represented as a Fourier cosine series\ i[e[

W�"x\ y\ o# � o1am exp"−g0 =x=−g1 =y=#

� o1mA"1#
00 0

a9

1
¦ s

i�0

ai cos ix1 0
b9

1
¦ s

j�0

bj cos jy1 "11a#

where

ai �
3
p g

p:1

9

exp"−g0x# cos ix dx\ bj �
1
p g

p

9

exp"−g1y# cos jy dy "11b#

and m � am:A"1#
00 is the imperfection parameter[

Substituting eqns "07#Ð"19# into eqns "01# and "02# gives a set of perturbation equations that
can be solved step by step[

Then using eqns "10# and "11# to solve these perturbation equations of each order\ and matching
the regular solutions with the boundary layer solutions at each end of the shell\ so that the
asymptotic solutions satisfying clamped boundary conditions are constructed as

W"x\ y\ o# � o $A"0#
99−A"0#

99 0cos f
p:1¦x

zo
¦

a

f
sin f

p:1¦x

zo 1 exp 0−a
p:1¦x

zo 1
−A"0#

99 0cos f
p:1−x

zo
¦

a

f
sin f

p:1−x

zo 1 exp 0−a
p:1−x

zo 1%
¦o1 $A"1#

00 cos mx cos ny¦A"1#
19 cos 1mx¦A"1#

91 cos 1ny

−"−A"1#
19¦A"1#

91 cos 1ny# 0cos f
p:1¦x

zo
¦

a

f
sin f

p:1¦x

zo 1 exp 0−a
p:1¦x

zo 1
−"−A"1#

19¦A"1#
91 cos 1ny# 0cos f

p:1−x

zo
¦

a

f
sin f

p:1−x

zo 1 exp 0−a
p:1−x

zo 1%
¦o2 ðA"2#

00 cos mx cos ny¦A"2#
91 cos 1nyŁ¦o3 ðA"3#

99¦A"3#
19 cos 1mx¦A"3#

91 cos 1ny

¦A"3#
02 cos mx cos 2ny¦A"3#

93 cos 3nyŁ¦O"o4# "12#
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F"x\y\ o# �−B "9#
99

y1

1
¦o $−B "0#

99

y1

1 %¦o1 $−B "1#
99

y1

1
¦B "1#

00 cosmx cosny

¦A"0#
99 0g13 0

0
b
¦g291cosf

p:1¦x

zo
−g13 0

0
b
−g291

a

f
sinf

p:1¦x

zo 1exp 0−a
p:1¦x

zo 1
¦A"0#

99 0g13 0
0
b
¦g291cosf

p:1−x

zo
−g13 0

0
b
−g291

a

f
sinf

p:1−x

zo 1exp 0−a
p:1−x

zo 1%
¦o2 $−B "2#

99

y1

1
¦B "2#

91 cos 1ny¦"−A"1#
19¦A"1#

91 cos 1ny# 0g13 0
0
b
¦g291cosf

p:1¦x

zo

−g13 0
0
b
−g291

a

f
sinf

p:1¦x

zo 1exp 0−a
p:1¦x

zo 1
¦"−A"1#

19¦A"1#
91 cos 1ny# 0g13 0

0
b
¦g291cosf

p:1−x

zo

−g13 0
0
b
−g291

a

f
sinf

p:1−x

zo 1exp 0−a
p:1−x

zo 1%
¦o3 $−B "3#

99

y1

1
¦B "3#

00 cosmx cos ny¦B "3#
19 cos 1mx¦B "3#

91 cos 1ny

¦B "3#
02 cosmx cos 2ny%¦O"o4# "13#

Note that\ all of the coe.cients in eqns "12# and "13# are related and can be written as the
functions of A"1#

00 but\ for the sake of brevity\ the detailed expressions are not shown\ whereas a\ f

and b are given in detail in Appendix B[
Next\ substituting eqns "12# and "13# into boundary condition "06c# and into closed condition

"05# and into eqn "04#\ the postbuckling equilibrium paths for the initially heated shells can be
written as

lP � 00−
T9

Tcr1 l"9#
P −l"0#

P "A"1#
00 o#−l"1#

P "A"1#
00 o#1¦l"2#

P "A"1#
00 o#2¦l"3#

P "A"1#
00 o#3¦= = = "14#

and

dx � d"9#
P ¦d"1#

P "A"1#
00 o#1¦d"3#

P "A"1#
00 o#3¦= = = "15#

in eqns "14# and "15#\ "A"1#
00 o# is taken as the second perturbation parameter relating to the

dimensionless maximum de~ection[ If the maximum de~ection is assumed to be at the point
"x\ y# �"9\ 9#\ then
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A"1#
00 o � Wm−U0W

1
m¦= = = "16a#

where Wm is the dimensionless form of the maximum de~ection of the shell that can be written as

Wm �
0
C2 $

t

z3 D�00D�11A�00A�11

WÞ
t

¦U1l
"9#
P % "16b#

All symbols used in eqns "14#Ð"16# and eqns "17#Ð"18# below are described in detail in Appendix
B[

Similarly\ substituting eqns "12# and "13# into boundary condition "06d# and into closed con!
dition "05#\ the thermal postbuckling equilibrium path for the initially compressed shells can be
written as

lT � C00 $00−
Px

Pcr1 l"9#
T −l"0#

T "A"1#
00 o#−l"1#

T "A"1#
00 o#1¦l"2#

T "A"1#
00 o#2¦l"3#

T "A"1#
00 o#3¦= = =% "17#

in eqn "17# "A"1#
00 o# is also taken as the second perturbation parameter in this case\ and we have

A"1#
00 o � Wm−U2W

1
m¦= = = "18a#

and the dimensionless maximum de~ection is written as

Wm �
0
C2 $

t

z3 D�00D�11A�00A�11

WÞ
t

¦U3l
"9#
T % "18b#

Note that eqns "14# and "17# contain terms l"0#
P \ l"2#

P \ l"0#
T and l"2#

T which are not included in the
modal imperfection case of Shen "0886c#[

Equations "14#Ð"18# can be used to obtain numerical results for the postbuckling load!de~ection
"or load!shortening# curves of composite laminated cylindrical shells with local geometric imper!
fections subjected to combined axial compression and uniform thermal loading\ specially for the
two cases of compressive postbuckling of initially heated laminated shells ^ and thermal post!
buckling of initially compressed laminated shells[ Buckling under pure axial compression and
buckling under pure uniform thermal loading follow as two limiting cases[ From eqn "00# and
Appendix B\ equations for the critical value of compressive load Pcr or temperature rise Tcr can
easily be found[ Due to the perturbation procedure only the same terms of buckling mode in
W�"x\ y\ o# will make contribution to the postbuckling loads\ so that lP "or lT# only depends on
d00\ d19\ d91\ d02 and d93[ Because the transverse shear deformation e}ects are neglected in the present
analysis\ the shell radius to thickness ratio should be greater than 49 and whose in!plane elastic
modulus to shear modulus ratio should be less than 49\ i[e[ R:t × 49 and E00:G01 ³ 49[ The buckling
load of a perfect shell can also be readily obtained numerically\ by setting m � 9 "or WÞ �:t � 9#\
while taking Wm � 9 "or WÞ :t � 9#[ In all cases\ the minimum buckling load is determined by
applying eqn "14# or "17# for various values of the buckling mode "m\ n#\ which determine the
number of half!waves in the X!direction and full waves in the Y!direction[ Note that because of
eqn "12#\ the prebuckling deformation of the shell is nonlinear\ thus the result presented is di}erent
from the classical one[
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3[ Numerical results and discussion

Numerical results were obtained to determine the e}ect of local geometric imperfections on the
buckling and postbuckling of composite laminated cylindrical shells under combined axial and
thermal loads[ A number of examples were solved to illustrate the performance of cross!ply
laminated cylindrical shells with or without local or initial buckling modal imperfections\ i[e[
W�"x\ y\ o# � o1am cos mx cos ny\ for which the results were obtained numerically in the manner
described previously and detailed further in Shen "0886c#[ Typical results are presented in dimen!
sionless graphical form in which l�P and d�P are used for initially heated shells and l�T is used for
initially compressed shells[ For all of the examples the shells buckled in the asymmetric mode and
all plies of equal thickness "note that t remains constant\ so that ply thickness t:N decreases as N
increases#[ The shell geometric parameters were L � 299 cm\ R � 3L:p � 270[86 cm and total
thickness t � 0 cm ^ and the local imperfection parameter were C0:L � C1:R � 9[94 ^ and the
material properties were E00 � 029[2 GPa\ E11 � 8[266 GPa\ G01 � 3[491 GPa\ n01 � 9[22\
a00 � 9[028×09−5:>C and a11 � 8[9×09−5:>C[ On all _gures WÞ �:t and WÞ :t mean the dimensionless
forms of the maximum values of\ respectively\ the initial and additional de~ection of the shell[

Figures 1Ð3 show\ respectively\ the compressive postbuckling load!de~ection and load!short!
ening curves of perfect and imperfect\ isotropic and 3!ply "9:89#S symmetrically and "9:89#1T

antisymmetrically cross!ply laminated cylindrical shells for the di}erent values of the initial thermal
loading T9 shown[ In Figs 1Ð3\ the well!known {{snap!through|| behavior of shells can be found
and the imperfection sensitivity can be predicted[ Clearly increasing the initial thermal stress
reduces the compressive buckling load substantially and the postbuckling equilibrium path becomes
signi_cantly lower[ Also the maximum value of l�P for the shells with local imperfections is slightly

Fig[ 1[ Postbuckling equilibrium paths of initially heated isotropic cylindrical shells ] "a# load!de~ection ^ "b# load!
shortening[
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Fig[ 2[ Postbuckling equilibrium paths of initially heated "9:89#S laminated cylindrical shells ] "a# load!de~ection ^ "b#
load!shortening[

Fig[ 3[ Postbuckling equilibrium paths of initially heated "9:89#1T laminated cylindrical shells ] "a# load!de~ection ^ "b#
load!shortening[
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Fig[ 4[ Comparisons of imperfection sensitivities of initially heated cylindrical shells under axial compression ] "a#
isotropic ^ "b# "9:89#S ^ "c# "9:89#1T[

greater than that of the shells with modal imperfections and the discrepancy between these two
shape imperfections will become very small when the de~ection is su.ciently large[

Figure 4 shows curves of imperfection sensitivity for initially heated\ isotropic and cross!ply
laminated cylindrical shells[ l� is the maximum value of l�P as WÞ :t varies on curves such as those
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of Figs 1Ð3\ made dimensionless by dividing by the critical value of l�P for the perfect shell\ i[e[ by
dividing the l�P given by WÞ :t � WÞ �:t � 9[9[ These results show that the imperfection sensitivity of
the isotropic shell is the largest one\ and the imperfection sensitivity of the "9:89#S shell is greater
than that of "9:89#1T[ The imperfection sensitivity of shells with local imperfections is weaker than
that of shells with modal imperfections[ Also the imperfection sensitivity of an initial heated shell
is slightly greater than that of the shell without any initial thermal stress[

Figures 5Ð7 are the thermal postbuckling results for initially compressed shells analogous to the
compressive postbuckling results of Figs 1Ð3\ but without load!shortening curves[

Figure 5 shows the thermal postbuckling load!de~ection curves of isotropic cylindrical shells
with or without local or modal imperfections[ Then Fig[ 6 shows that the perfect "9:89#S laminated
cylindrical shells has a weak {{snap!through|| thermal postbuckling response[ In contrast\ for an
imperfect shell with local or modal imperfections there is no maximum value of l�T when
WÞ �:t × 9[97 "or 9[95#\ as a result the shell structure becomes imperfection!insensitive[

Figure 7 shows that if the temperature exceeds a critical buckling level\ the thermal postbuckling
load!de~ection curves of the initially compressed "9:89#1T laminated shell go upward dramatically\
and the shell structure also becomes imperfection!insensitive[

Figure 8 shows curves of imperfection sensitivity for initially compressed "9:89#S laminated
cylindrical shells[ Now l� is the maximum value of l�T made dimensionless by dividing by the
critical value of l�T for the perfect shell[ Note that in all of these examples the imperfection
sensitivity of shells under thermal load is weaker than that of shells under compressive load
"compare Figs 4"b# and 8#\ and the results shown in Fig[ 8 were only for the "9:89#S laminated
cylindrical shell with very small initial geometric imperfections[

Fig[ 5[ Thermal postbuckling load!de~ection curves of initially compressed isotropic cylindrical shells[
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Fig[ 6[ Thermal postbuckling load!de~ection curves of initially compressed "9:89#S laminated cylindrical shells[

4[ Conclusions

In order to assess the e}ect of local geometric imperfections on the buckling and postbuckling
of composite laminated cylindrical shells subjected to combined axial compression and a uniform
temperature rise\ a postbuckling analysis is developed according to a boundary layer theory and a
fully nonlinear postbuckling load!de~ection or load!shortening curve is presented[ The two cases
of compressive postbuckling of initially heated shells and of thermal postbuckling of initially
compressed shells have been considered[ The numerical examples relate to the performances of
cross!ply laminated cylindrical shells with or without local geometric imperfections\ from which
results for isotropic cylindrical shells follow as a limiting case[ Like the shell with initial buckling
modal imperfections\ the numerical results show that the postbuckling behavior of initially com!
pressed\ laminated cylindrical shells under thermal load is di}erent from that of mechanically
loaded shells with and without initial thermal stress[ In many cases the cylindrical shell has a stable
thermal postbuckling equilibrium path\ and the shell structure becomes imperfection!insensitive[
In addition\ for a given value of WÞ �:t\ local imperfections have an e}ect which is somewhat less
severe than a modal imperfection\ and the imperfection sensitivity of shells with local imperfections
is weaker than that of shells with modal imperfections[
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Fig[ 7[ Thermal postbuckling load!de~ection curves of initially compressed "9:89#1T laminated cylindrical shells[

Fig[ 8[ Comparisons of imperfection sensitivities of initially compressed "9:89#S laminated cylindrical shells under
uniform temperature loading[
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Appendix A

The membrane\ coupling and ~exural rigidities beneath eqn "2# are de_ned as

A � &
A00 A01 9

A01 A11 9

9 9 A55
'\ B � &

B00 B01 9

B01 B11 9

9 9 B55
'\ D � &

D00 D01 9

D01 D11 9

9 9 D55
' "A0#

and Aij\ Bij and Dij are de_ned by

"Aij\ Bij\ Dij# � s
k�0 g

tk

tk−0

"QÞij#k"0\ Z\ Z1# dZ "i\ j � 0\ 1\ 5# "A1#

where QÞij are the transformed elastic constants\ de_ned by
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where

Q00 �
E00

"0−n01n10#
\ Q11 �

E11

"0−n01n10#
\ Q01 �

n10E00

"0−n01n10#
\ Q55 � G01 "A3#

and

c � cos u\ s � sin u "A4#

where u � lamination angle with respect to the shell X!axis[
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' &
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where a00 and a11 are thermal expansion coe.cients for a single ply[

Appendix B

In eqns "14#Ð"16#
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and in eqns "17# and "18#
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in the preceding equations



Hui!Shen Shen : International Journal of Solids and Structures 25 "0888# 486Ð506505

`0 � m3¦1g01m
1n1b1¦g1

03n
3b3

`1 � m3¦1g11m
1n1b1¦g1

13n
3b3

`2 � g29m
3¦g21m

1n1b1¦g23n
3b3

`02 � m3¦07g11m
1n1b1¦70g1

13n
3b3

a � ð0
1
"b−c#Ł0:1\ f � ð0

1
"b¦c#Ł0:1

b � $
g03g13

0¦g03g13g
1
29%

0:1

\ c � −
g03g13g29

0¦g03g13g
1
29

"B2#

and
m00 � 0¦md00\ m10 � 1¦md00\ m20 � 2¦md00\ m30 � 3¦md00\ m01 � 0¦1md00\

m002 � 0¦md00¦md02\ m102 � 0¦m002\ m190 � m090−0\

m090 �
m10

m1
00

\ m290 �
md00

m1
00

\ m291 �
m1

10

m1
00

\ m111 �
m01m002

m00

\

m210 �
m10

m00

¦m00\ m211 �
1−m002

m00

−m002\

m310 � m01m20¦1m1
00\ m311 � m00m10\

m312 �
m10

m00

m01¦1
m002

m00

¦1m002−
m01m30

m1
00

¦1\ m313 �
4−m00

m1
00

−
m1

002

m00

−0

m320 � 1m00¦
"0¦m002#"1m00¦m002#

m00

\ m321 �
m2

10

m00

¦
m002

m00

−m002"m002¦md00#

m330 � m10¦1m002¦
m1

002

m00

¦
m2

002

m00

\ m331 � m10m20¦1m002−m1
002−m2

002

d00 �
7

p1

g1

"g1
0¦m1#"g1

1¦n1# $g0¦0m sin
mp

1
−g0 cos

mp

1 1 exp"−g0p:1#%
×ð0−"−0#n exp"−g1p#Ł

d02 �
7

p1

g1

"g1
0¦m1#"g1

1¦8n1# $g0¦0m sin
mp

1
−g0 cos

mp

1 1 exp"−g0p:1#%
×ð0−"−0#n exp"−g1p#Ł

d19 �
3

p1g1

g0

"g1
0¦3m1#

ð0−"−0#m exp"−g0p:1#Łð0−exp"−g1p#Ł

d91 �
3

p1g0

g1

"g1
1¦3n1#

ð0−exp"−g0p:1#Łð0−exp"−g1p#Ł



Hui!Shen Shen : International Journal of Solids and Structures 25 "0888# 486Ð506 506

d93 �
3

p1g0

g1

"g1
1¦05n1#

ð0−exp"−g0p:1#Łð0−exp"−g1p#Ł "B3#

References

Abdelmoula\ R[\ Damil\ N[\ Potier!Ferry\ M[\ 0881[ In~uence of distributed and localized imperfections on the buckling
of cylindrical shells under external pressure[ International Journal of Solids and Structures 18\ 0Ð14[

Amazigo\ J[C[\ Budiansky\ B[\ 0861[ Asymptotic formulas for the buckling stresses of axially compressed cylinders with
localized or random axisymmetric imperfections[ ASME Journal of Applied Mechanics 28\ 068Ð073[

Amazigo\ J[C[\ Fraser\ W[B[\ 0860[ Buckling under external pressure of cylindrical shells with dimple shaped initial
imperfections[ International Journal of Solids and Structures 6\ 772Ð899[

Arbocz\ J[\ Babcock\ C[D[\ 0858[ The e}ect of general imperfections on the buckling of cylindrical shells[ ASME Journal
of Applied Mechanics 25\ 17Ð27[

Batdorf\ S[B[\ 0836[ A simpli_ed method of elastic stability for thin cylindrical shells[ NACA TR!763[
Bushnell\ D[\ Smith\ S[\ 0860[ Stress and buckling of nonuniformly heated cylindrical and conical shells[ AIAA Journal

8\ 1203Ð1210[
Hutchinson\ J[W[\ Tennyson\ R[C[\ Muggeridge\ D[B[\ 0860[ E}ect of local axisymmetrical imperfection on the buckling

behavior of a circular cylindrical shell under axial compression[ AIAA Journal 8\ 37Ð41[
Kioter\ W[T[\ 0834[ On the stability of elastic equilibrium "in Dutch#[ Thesis\ Delft\ Amsterdam ^ also NASA Technical

Translation F!09\ 772 "0856#[
Krishnakumar\ S[\ Foster\ C[G[\ 0880[ Axial load capacity of cylindrical shells with local geometric defects[ Exp[ Mech[

20\ 093Ð009[
Sheinman\ I[\ Shaw\ D[\ Simitses\ G[J[\ 0872[ Nonlinear analysis of axially!loaded laminated cylindrical shells[ Computers

and Structures 05\ 020Ð026[
Shen\ H[S[\ 0886a[ Post!buckling analysis of imperfect sti}ened laminated cylindrical shells under combined external

pressure and axial compression[ Computers and Structures 52\ 224Ð237[
Shen\ H[S[\ 0886b[ Thermal postbuckling analysis of imperfect sti}ened laminated cylindrical shells[ International

Journal of Non!Linear Mechanics 21\ 148Ð164[
Shen\ H[S[\ 0886c[ Thermomechanical postbuckling of sti}ened laminated cylindrical shell[ ASCE J[ Engrg Mech[ 012\

322Ð332[
Shen\ H[S\[ Chen\ T[Y[\ 0877[ A boundary layer theory for the buckling of thin cylindrical shells under external pressure[

Applied Mathematics and Mechanics 8\ 446Ð460[
Shen\ H[S[\ Chen\ T[Y[\ 0889[ A boundary layer theory for the buckling of thin cylindrical shells under axial compression[

In Advances of Applied Mathematics and Mechanics in China\ ed[ W[ Z[ Chien and Z[ Z[ Fu\ 1\ 044Ð061[ Int[
Academic Publishers\ Beijing\ China[

Shen\ H[S[\ Chen\ T[Y[\ 0880[ Buckling and postbuckling behaviour of cylindrical shells under combined external
pressure and axial compression[ Thin!Walled Structures 01\ 210Ð223[

Shen\ H[S[\ Zhou\ P[\ Chen\ T[Y[\ 0882[ Postbuckling analysis of sti}ened cylindrical shells under combined external
pressure and axial compression[ Thin!Walled Structures 04\ 32Ð52[

Shulga\ S[A[\ Sudol\ D[E[\ Nishino\ F[\ 0881[ In~uence of the mode of initial geometrical imperfections on the load!
carrying capacity of cylindrical shells made of composite materials[ Thin!Walled Structures 03\ 78Ð092[


